23 research outputs found

    Correlation of Clinical presentation and Angiographic Morphology in patients with Coronary Artery Disease in Ahmed Gasim Hospital-Sudan

    Get PDF
    Background: This study was done in Ahmed Qasim Hospital, from January to June 2005. Objectives: We studied the correlation between clinical presentation and angiographic findings in patients with coronary artery disease. Method: We studied 105 patients who underwent coronary angiography in Ahmed Qasim Hospital , from January to June 2005. 56% were males, 44% were females. Ages 30-85 (mean: 59). The lesions were classified into simple (34%) and complex (66%) according to Ambrose’s modified criteria, and into single, two or three vessel disease. Results: 87 patients had angina; of this group 41 had established angiographic findings. There was no difference in lesion morphology or number of diseased vessels in those with stable and unstable angina. 30 patients had diabetes, 75 were not diabetics. Complex lesions were more common in diabetics (70%) against (63%) for non diabetics. Three vessel disease was more prevalent in diabetics (43%) against (22%) for non diabetics. In 16 patients with history of MI the presence of three vessel disease was significant (75%). Conclusion: The morphology of the lesion was not correlated to type of angina in our study. Diabetes is associated with more extensive coronary involvement. Myocardial infarction is more common in patients with three vessel disease

    A review on Precoding Techniques For mm-Wave Massive MIMO Wireless Systems

    Get PDF
    The growing demands for high data rate wireless connectivity shed lights on the fact that appropriate spectrum regions need to be investigated so that the expected future needs will be satisfied. With this in mind, the research community has shown considerable interest in millimeter-wave (mm-wave) communication. Generally, hybrid transceivers combining the analog phase shifter and the RF chains with digital signal processing (DSP) systems are used for MIMO communication in the fifth generation (5G) wireless networks. This paper presents a survey for different precoding or beamforming techniques that have been proposed in the literature. These beamforming techniques are mainly classified based on their hardware structure into analog and digital beamforming. To reduce the hardware complexity and power consumption, the hybrid precoding techniques that combine analog and digital beamforming can be implemented for mm-wave massive MIMO wireless systems. The performance of the most common hybrid precoding algorithms has been investigated in this paper

    RAN Functional Split Options for Integrated Terrestrial and Non-Terrestrial 6G Networks

    Full text link
    Leveraging non-terrestrial platforms in 6G networks holds immense significance as it opens up opportunities to expand network coverage, enhance connectivity, and support a wide range of innovative applications, including global-scale Internet of Things and ultra-high-definition content delivery. To accomplish the seamless integration between terrestrial and non-terrestrial networks, substantial changes in radio access network (RAN) architecture are required. These changes involve the development of new RAN solutions that can efficiently manage the diverse characteristics of both terrestrial and non-terrestrial components, ensuring smooth handovers, resource allocation, and quality of service across the integrated network ecosystem. Additionally, the establishment of robust interconnection and communication protocols between terrestrial and non-terrestrial elements will be pivotal to utilize the full potential of 6G technology. Additionally, innovative approaches have been introduced to split the functionalities within the RAN into centralized and distributed domains. These novel paradigms are designed to enhance RAN's flexibility while simultaneously lowering the costs associated with infrastructure deployment, all while ensuring that the quality of service for end-users remains unaffected. In this work, we provide an extensive examination of various Non-Terrestrial Networks (NTN) architectures and the necessary adaptations required on the existing 5G RAN architecture to align with the distinct attributes of NTN. Of particular significance, we emphasize the crucial RAN functional split choices essential for the seamless integration of terrestrial and non-terrestrial components within advanced 6G networks

    Green Synthesis of Silver Nanoparticles from Diospyros villosa Extracts and Evaluation of Antioxidant, Antimicrobial and Anti-Quorum Sensing Potential.

    Get PDF
    The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL-1 compared to ascorbic acid (9.58 µg·mL-1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g-1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 μg·mL-1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 μg·mL-1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 μg·mL-1. The L80 and SRT at 160 μg·mL-1 and LRT at 320 μg·mL-1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections

    The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.)

    Get PDF
    This study focused on the physiology, growth and antioxidant activity response of hydroponically grown lettuce (Lactuca sativa L.) under sole-source LED lighting of differing spectra. Lighting spectra were provided by differing combinations of LEDs of three different peak wavelengths, (Blue 435, Blue 450, and Red 663 nm) with ratios of B450/R663: 1.25 ± 0.1, B450/R663: 1.25 ± 0.1, and B450/R663 1:1 at two light intensities of photosynthetically active radiation (PAR) (270 μmol m−2 s−1 and 60 μmol m−2 s−1). A further experiment was conducted, in which Blue and Red LEDs were supplemented with Green (Blue 450, Red 663, and Green 520 nm) with ratios of B435/R663: 1.25 ± 0.1, B450/R663/G520: 1/0.73/0.26, and B450/R663: 1.25 ± 0.1. LED light intensities under the different spectra were adjusted to deliver the same level of PAR (270 ± 20 μmol m−2 s−1). Results from the first experiment showed that increased fraction of blue 435 nm in combination with red light at 663 nm at high irradiance enhanced the physiology of lettuce (i.e., significantly increased assimilation rate, stomatal conductance and transpiration rate) and increased the yield while having no significant effect on antioxidant activity. At the lower irradiance, the B435/R663 significantly increased antioxidant activity compared to other spectra. Results from the second experiment showed no significant effect of the spectra of LEDs on the physiology and yield of lettuce, but antioxidant activity was very significantly induced by B450/R663 at the ratio of 1.25 ± 0.1. However, the amount was still less than that obtained by B435/R663 1.25 ± 0.1 from the first experiment. This study indicates that LED light with a spectrum of B435/R663 at a ratio of 1.25 ± 0.1 significantly improves lettuce yield and antioxidant activity.</jats:p

    A Novel New Light Recipe Significantly Increases the Growth and Yield of Sweet Basil (Ocimum basilicum) Grown in a Plant Factory System

    Get PDF
    Light is a crucial element for plant growth and production. High-pressure sodium (HPS) lamps are considered not very electrically efficient as they generate high radiant heat, and as a consequence, there has been a lot of interest in replacing HPS lamps with new more efficient lighting sources in the form of light-emitting diodes (LEDs). LEDs have a linear photon output with the electrical input current, and this great feature allows the design of lighting arrays that match the plant’s needs. In the current study, light spectrum absorbance of pigments extracted from 14 plant species was analyzed. Two absorbance peaks were observed in the Photosynthetically Active Radiation (PAR) region: one at 435 nm and the other at 665 nm. The light spectrum array was designed to produce the spectrum absorbed by basil pigments. This included the use of new wavelengths of 435 ± 5 nm to cover the blue region. Moreover, the ratio between blue and red was considered to match the absorbance of basil pigment. The use of a light spectrum that matches the plant absorbance significantly improved the investigated physiological parameters and increased the growth yield of basil. Moreover, this is the first to confirm the great positive impact of using 435 nm light spectrum in comparison with the commercially widely used 450 nm LED spectrum. This investigation has great scientific and commercial applications in the field of indoor faming and plant factory systems.</jats:p

    Essential Oils from Artemisia herba alba Asso., Maticaria Recutita L., and Dittrichia Viscosa L. (Asteraceae): A Promising Source of Eco-Friendly Agents to Control Callosobruchus maculatus Fab. Warehouse Pest

    Get PDF
    Callosobruchus maculatus (Fab.) (C. maculatus) is one of the major pests of legume seeds in storage causing significant damage, leading to food insecurity and low income for farmers. This work was planned to develop eco-friendly agents from essential oils of Artemisia herba alba Asso. (AEO), Maticaria Recutita L. (MEO), and Dittrichia Viscosa L. (DEO) to control C. maculatus. To achieve this goal, essential oils (EOs) were extracted by hydro-distillation using Clevenger apparatus before being characterized by GC-MS. EOs were used for testing purposes using three different tests, namely, inhalation toxicity, contact toxicity, and repellency tests. GC-MS analysis of EOs showed the presence of 16 potentially active compounds in AEO and 38 in MEO, whilst 15 compounds were identified in DEO. AEO was higher in thujone (57.6%) and chrysanthenone (11.8%). Santolina alcohol (40.7%) and germacrene D (8.9%) were the major compounds identified in MEO, whereas isocostic acid (72.3%) was the chief compound of DEO. The obtained findings showed that the studied EOs showed considerable insecticidal activity against C. maculatus with a lethal dose (LC50) of 3.78, 8.86, and 14.34 μL/1 liter of air by AEO, MEO, and DEO, respectively. At 1 μL/1 liter of air, the oviposition reduction rate was 90.02%, 70.65%, and 48.23% by AEO, MEO, and DEO, respectively, whereas the emergence reduction rate was 87.32%, 60.08%, and 32.24% by AEO, MEO, and DEO, respectively. With increasing doses up to 20 μL/L, the reduction of individual emergence reached 98.8% by AEO of 24 h after treatment. AEO, MEO, and DEO showed significant repellent effects against adults of C. maculatus with repulsion percentages of 60.83%, 50.83%, and 72.5%, respectively. The outcome of this work suggests that the essential oils of the studied plants, particularly Artemisia herba alba Asso. oils, can constitute a natural and environmentally friendly alternative to develop new bioinsecticides for the control of C. maculatus.</jats:p

    Optimum Co-Design of Spectrum Sharing Between MIMO Radar and MIMO Communication Systems: An Interference Alignment Approach

    No full text

    The impact

    Get PDF
    Previous researches and investigations on the area of green cities and sustainable architecture lack the study and analysis of the impact of sustainability principles applications on the city image. At this point, a critical question is raised; to what extent the architectural identity of the city could be influenced by the adoption of the different sustainability trends? This question represents the main research question that the paper will address. The adopted sustainability trends vary in their forms and contents. Some trends employed sustainability principles inspired from the vernacular architecture, which not only give a tested and reliable model, but also enhances socio-cultural and economic values of the local community. Another trends employed sustainability principles that are based on the most modern and advanced technology which expresses the culture of globalization. While a third trend integrates both of the two trends to introduce a contemporary interpretation of the vernacular thought within the framework of modern advancements trying to bridge the gap between the local and the global. From this point of view, this paper focuses on two key issues; firstly: study and analysis of the mentioned sustainability trends in housing design, secondly: assessing and analyzing the impact of these trends on shaping the identity of the Arab city

    Joint interference alignment and power allocation for NOMA-based multi-user MIMO systems

    No full text
    Abstract Interference alignment (IA) and non-orthogonal multiple access (NOMA) are key technologies for achieving the capacity scaling required by next generation networks to overcome the unprecedented growth of data network traffic. Each of these technologies was proved to present excellent performance for MIMO systems. In this article, we propose a joint IA and power allocation (PA) framework for NOMA-based multi-user MIMO (MU-MIMO) systems. Different approaches for applying IA in downlink NOMA-based MU-MIMO systems will be addressed while implementing a PA technique that fully exploits the characteristics of NOMA-based systems. The proposed framework aims to maximize the sum-rate of the NOMA-based MU-MIMO system through combining IA with PA. The process begins by initially grouping the system users into clusters for optimum implementation of NOMA. The sum-rate maximization is carried out under cluster power budget, user quality-of-service (QoS), and robust successive interference cancellation (SIC) constraints. Meanwhile, it uses the power domain multiplexing strategy to allow the users within each cluster to share the data streams without exerting interference to one another. Three iterative joint IA and PA algorithms are proposed for NOMA-based MU-MIMO systems. Moreover, these algorithms are compared with orthogonal multiple access (OMA)-based MU-MIMO counterpart as well as the state-of-the-art techniques presented for NOMA-based MU-MIMO systems. Numerical simulations verify that the proposed framework can greatly improve the performance of NOMA-based MU-MIMO systems in terms of the achievable sum-rate when compared with OMA-based MU-MIMO and the state-of-the-art NOMA-based MU-MIMO systems
    corecore